jueves, 11 de septiembre de 2008

JESUS GARCIA FLORES


8 comentarios:

RENAN AVILA dijo...

Jesus ya puede hacer un resumen de los materiales ysus propiedades,ya que pronto será evaluado

RENAN AVILA dijo...

Lo mandé a la biblioteca y hasta el momento no ha trabajdo en las tareas que le dejé, está perdiendo puntos por no entregar a tiempo sus trabajos.

Jesus Garcia Flores dijo...

Operaciones a seguir para preparar una muestra metalografía.
A) Corte: El tamaño de la muestra siempre que se pueda debe ser tal que su manejo no encierre dificultad en la operación.
-Corte por Sierra
Produce severas condiciones de trabajo en frío y no es ventajoso. El corte mediante este método ocasiona superficies irregulares con valles excesivamente altos, dando como efecto más tiempo de aplicación de las técnicas de preparación de las muestras. Generalmente este tipo de corte es utilizado para extraer probetas de piezas muy grandes, para poder luego proceder con el corte abrasivo y adecuar la probeta a los requerimientos necesarios.
-Corte por Disco Abrasivo
Este tipo de corte es el más utilizado, ya que la superficie resultante es suave, y el corte se realiza rápidamente. Los discos para los cortes abrasivos, están formados por granos abrasivos (tales como óxido de aluminio o carburo de silicio), aglutinados con goma u otros materiales. Los discos con aglutinantes de goma son los más usados para corte húmedo; los de resina son para corte en seco.
B) Montaje de muestras: Con frecuencia, la muestra a preparar, por sus dimensiones o por su forma, no permite ser pulida directamente, sino que es preciso montarla o embutirla en una pastilla. El material del que se componen estas puede ser Lucita (resina termoplástica) o Bakelita (resina termo endurecedle).
C) Desbaste: Después de montada la probeta, se inicia el proceso de desbaste sobre una serie de hojas de esmeril o lija con abrasivos más finos, sucesivamente. El proceso de desbaste se divide en 3 fases: Desbaste grosero, Desbaste intermedio y Desbaste final. Cada etapa de preparación de probetas metalografías debe realizarse muy cuidadosamente para obtener al final una superficie exenta de rayas.
-Desbaste Grosero
Es el desbaste inicial, que tiene como objetivo planear la probeta, lo cual puede hacerse a mano y aun mejor con ayuda de una lijadora de banda. El papel de lija utilizado es de carburo de silicio con granos de 240 o papel de esmeril # 1. En cualquier caso, la presión de la probeta sobre la lija o papel de esmeril debe ser suave, para evitar la distorsión y rayado excesivo del metal.
-Desbaste Intermedio
Se realiza apoyando la probeta sobre el papel de lija o de esmeril, colocado sobre una mesa plana o esrneriladora de banda fija. En esta fase se utilizan los papeles de lija No. 320/340 y 400 o de esmeril # 1/O y 2/O.
-Desbaste Final
Se realiza de la misma forma que los anteriores, con papel de lija No. 600 ó de esmeril # 3/0. En todo caso, en cada fase del desbaste debe tomarse siempre en cuenta el sistema refrigerante. Cada vez que se cambie de papel, debe girarse 90 grados, en dirección perpendicular a la que se seguía con el papel de lija anterior, hasta que las rayas desaparezcan por completo. Se avanza y se facilita mucho las operaciones descritas utilizando una pulidora de discos, a las que se fija los papeles de lija adecuado en cada fase de la operación. Las velocidades empleadas varían de 150 a 250 rpm. En otro caso se pueden utilizar devastadoras fijas o de bandas giratorias.
D) Pulido:
-Pulido fino
La última aproximación a una superficie plana libre de ralladuras se obtiene mediante una rueda giratoria húmeda cubierta con un paño cargado con partículas abrasivas seleccionadas en su tamaño. En éste sentido, existen muchos abrasivos, prefiriendo a gamma del oxido de aluminio para pulir metales ferrosos, los basados en cobre u oxido de cerio para pulir aluminio, magnesio y sus aleaciones. Otros abrasivos son la pasta de diamante, oxido de cromo y oxido de magnesio. La selección del paño para pulir depende del material que se va a pulir y el propósito del estudio mecanográfico.
-Pulido electrolítico
Es una alternativa de mejorar al pulido total pudiendo reemplazar al fino pero muy difícilmente al pulido intermedio. Se realiza colocando la muestra sobre el orificio de la superficie de un tanque que contiene la solución electrolítica previamente seleccionada, haciendo las veces de ánodo. Como cátodo se emplea un material inerte como platino, aleación de níquel, cromo, etc. Dentro del tanque hay unas aspas que contienen en constante agitación al líquido para que circule permanentemente por la superficie atacándola y puliéndola a la vez. Deben controlarse el tiempo, el amperaje, el voltaje y la velocidad de rotación del electrolito para obtener un pulido satisfactorio. Muchas veces después de terminado este pulido la muestra queda con el ataque químico deseado para la observación en el microscopio.
e) Ataque: Permite poner en evidencia la estructura del metal o aleación. Existen diversos métodos de ataque pero el más utilizado es el ataque químico. El ataque químico puede hacerse sumergiendo la muestra con cara pulida hacia arriba en un reactivo adecuado, o pasar sobre la cara pulida un algodón embebido en dicho reactivo. Luego se lava la probeta con agua, se enjuaga con alcohol o éter y se seca en corriente de aire. El fundamento se basa en que el constituyente mecanográfico de mayor velocidad de reacción se ataca más rápido y se verá más oscuro al microscopio, y el menos atacable permanecerá más brillante, reflejará más luz y se verá más brillante en el microscopio.

IB-ROBOCUT-A
Gran cortadora metalografía automática con microprocesador de control y operación hidroneumática.
- Mesa de corte con ranuras en T y doble mordaza de accionamiento rápido ajustable para aflojar diversos tipos y tamaños de piezas.
- Fuerza de corte y avance programables.
- Corte por impulsos.
- Sistema de recirculación de 85 l.
- Armario base integrado.
- Máxima capacidad de corte: diámetro 120 mm.
- Potencia del motor: 6,3 CV
- Disco de corte: diámetro 350 mm.
- Mesa de corte: 350 x 350 mm.
- Aire comprimido: 6 bar



Preparación de la superficie a analizar
1. Cortar la muestra con una cortadora metalografía: es un equipo capaz de cortar con un disco especial de corte por abrasión, mientras suministra un gran caudal de refrigerante, evitando así el sobrecalentamiento de la muestra. De este modo, no se alteran las condiciones micro estructurales de la misma.
1. se usa el equipo Devastadora y Pulidora Metalografía, se prepara la superficie del material, en su primera fase denominada Desbaste Grueso, donde se devasta la superficie de la muestra con papel de lija, de manera uniforme y así sucesivamente disminuyendo el tamaño de grano (Nº de papel de lija) hasta llegar al papel de menor tamaño de grano. Una vez obtenido el último pulido con el papel de lija de tamaño de grano más pequeño. Al inicio de la segunda fase de pulido denominada Desbaste Fino, en la que se requiere de una superficie plana libre de ralladuras la cual se obtiene mediante una rueda giratoria húmeda cubierta con un paño especial cargado con partículas abrasivas cuidadosamente seleccionadas en su tamaño para ello existen gran posibilidad de abrasivos para efectuar el ultimo pulido; en tanto que muchos harán un trabajo satisfactorio parece haber preferencia por la gama de óxidos de aluminio para pulir materiales ferrosos y de los basados en cobre y óxido de cerio para pulir aluminio, magnesia y sus aleaciones.
Pulimento
La etapa del pulimento es ejecutada en general con paños macizos colocados a platos giratorios circulares, sobre los cuales son depositadas pequeñas cantidades de abrasivos, en general diamante industrial en polvo fino, con granulometrías de 10 micras, 6, 3, 1, y 0,25 micras
Ataque químico
Hay una enormidad de ataques químicos, para diferentes tipos de metales y situaciones. En general, el ataque es hecho por inmersión o fregado con algodón embebido en el líquido escogido por la región a ser observada, durante algunos segundos hasta que la estructura o defecto sea revelada. Uno de los más usados es el NITAL, (ácido nítrico y alcohol), para la grande mayoría de los metales ferrosos.
Microscopia
Utilización de microscopios estéreos (que favorecen la profundidad de foco e permiten por tanto, visión tridimensional de la área observada) con aumentos que pueden variar de 5x a 64X
El principal instrumento para la realización de un examen mecanográfico lo constituye el microscopio mecanográfico, con el cual es posible examinar una muestra con aumentos que varían entre 50 y 2000.
El microscopio mecanográfico, debido a la opacidad de los metales y aleaciones, opera con la luz reflejada por el metal. Por lo que para poder observar la muestra es necesario preparar una probeta y pulir a espejo la superficie.

Existe una norma internacional ASTM E 112 que trata sobre las correctas técnicas de Metalografía.


Metalografía y objetivos principales de la metalografía.
Es la ciencia que estudia las características estructurales o constitutivas de un metal o aleación relacionándolas con las propiedades físicas y mecánicas.
Entre las características estructurales están el tamaño de grano, el tamaño, forma y distribución de las fases que comprenden la aleación y de las inclusiones no metálicas, así corno la presencia de segregaciones y otras irregularidades que profundamente pueden modificar las propiedades mecánicas y el comportamiento general de un metal.
Mucha es la información que puede suministrar un examen metalográfico. El principal instrumento para la realización de un examen metalográfico es el microscopio metalográfico, con el cual es posible examinar una muestra con aumentos que varían entre 50 y 2000.
OBJETIVO PRINCIPAL DE LA METALOGRAFÍA:
Es la realización de una reseña histórica del material buscando micro estructura, inclusiones, tratamientos térmicos a los que haya sido sometido, micro rechupes, con el fin de determinar si dicho material cumple con los requisitos para los cuales ha sido
diseñado; además hallaremos la presencia de material fundido, forjado y laminado. Se conocerá la distribución de fases que componen la aleación y las inclusiones no metálicas, así como la presencia de segregaciones y otras irregularidades.


Técnicas de preparación metalográficas.
Preparación Normal o Tradicional
Esmerilado burdo o tosco: La muestra debe ser de un tamaño de fácil manipulación. Una muestra blanda se puede aplanar si se mueve lentamente hacia arriba y abajo a través de una superficie de una lima plana poco áspera. La muestra plana o dura puede esmerilarse sobre una lija de banda, manteniendo la muestra fría sumergiéndola frecuentemente en agua durante la operación de esmerilado, evitando alterar su estado con el calor que se produce en el acto de pulido y así mantener una misma fase. En todas las operaciones de esmerilado, la muestra debe moverse en sentido perpendicular a la ralladura existente. El esmerilado, continúa hasta que la superficie quede plana, y todas las ralladuras debidas al corte manual o al disco cortador no sean visibles, emulando la superficie de un espejo.
Montaje: Este paso se realiza en el caso que las muestras sean pequeñas o de difícil manipulación en las etapas de pulido intermedio y final. Piezas pequeñas como tornillos, tuercas, muestras de hojas metálicas, secciones delgadas entre otros, deben montarse en un material adecuado o sujetarse rígidamente en una monta mecánica. La resina que se utiliza para fijar la probeta, se aplica a la probeta por medio de temperatura, es decir, es una resina termo-fijadora, comúnmente empleada para montar muestras es la baquelita. La muestra y cantidades correctas de baquelita, se colocan en un cilindro de la prensa de montar manual. La temperatura y presión aplicada producen una fuerte adhesión de la baquelita a la muestra, proporcionando un tamaño uniforme convenientes para manipular las muestras en operaciones de pulido posteriores.
Pulido Intermedio: Luego del paso anterior, la muestra se pule sobre una serie de hojas de esmeril o lijas que contienen abrasivos finos. El primer papel es generalmente Nº 150 luego 200, 300, 400 y finalmente es posible encontrar en el mercado Nº1500. Antes de pulir con la siguiente lija se debe girar en 90º la muestra, a fin de eliminar el rayado realizado con la lija anterior. Las operaciones de pulido intermedio con lijas de esmeril se hacen en húmedo; sin embargo, en ciertos casos, es conveniente realizar este paso en seco ya que ciertas aleaciones se corroen fácilmente por la acción del agua.
Pulido Fino: Esta etapa representa una de los pasos de mayor cuidado por parte del preparador de muestras, ya que en muchas ocasiones en la superficie del metal se han formado dobles caras o planos y que por supuesto por ningún motivo pueden ser utilizadas para el pulido fino, sino se remedia tal defecto superficial. El pulido fino se realiza mediante un disco giratorio cubierto con un paño especial, húmedo, cargado con partículas abrasivas, como es el oxido de aluminio para pulir materiales ferrosos y de los base cobre, y oxido de cerio para pulir aluminio, magnesio y sus aleaciones. La selección del paño para pulir depende del material y del propósito del estudio metalográfico. Se pueden encontrar paños de lanilla o pelillo, similares a los que se utilizan en las mesas de pool. También se pueden encontrar paños sintéticos para pulir con fines de pulido general, de los cuales el Gama y el Micro paño son los que se utilizan más ampliamente.
Preparación Electroquímica
La técnica por pulido electroquímico requiere al igual que el caso anterior, la selección de una probeta de un tamaño apropiado para luego utilizar el electro pulido. Este método consiste en una disolución electroquímica de la superficie del metal que produce un aislamiento y pulido, se aplica por lo general a muestras pequeñas. En el caso de metales blandos se requiere tomar ciertas precauciones para realizar el pulido debido a que se pueden formar capas amorfas. Para que ello no ocurra se utiliza también el pulido electrolítico, para lo cual se coloca la probeta como ánodo en una solución adecuada de electrolito (suspendida por un hilo de platino sujeta por pinzas conectadas al polo positivo de una batería) de tal forma de aplicar una fuerza electromotriz creciente, la intensidad se va a elevar hasta alcanzar un máximo. Aunque el potencial va aumentando, cae hasta alcanzar un valor constante y luego se vuelve a elevar bruscamente. Esta parte constante de la curva indica que corresponde al período de formación de la superficie lisa y brillante. Las probetas se lavan y luego se atacan por el método usual o bien se puede utilizar un ataque electrolítico que consiste en reducir la intensidad de corriente sin cambiar el electrolito inicial.

Jesus Garcia Flores dijo...

Rayos X
La denominación rayos X designa a una radiación electromagnética, invisible, capaz de atravesar cuerpos opacos y de impresionar las películas fotográficas. La longitud de onda está entre 10 a 0,1 nanómetros, correspondiendo a frecuencias en el rango de 30 a 3.000 PHz (de 50 a 5.000 veces la frecuencia de la luz visible).
Descubrimiento
El 8 de noviembre de 1895, el físico Wilhelm Conrad Röntgen, realiza experimentos con los tubos de Hittorff-Crookes (o simplemente tubo de Crookes) y la bobina de Ruhmkorff, analizaba los rayos catódicos, para evitar la fluorescencia violeta, que producían los rayos catódicos en las paredes de un vidrio del tubo, crea un ambiente de oscuridad, cubre el tubo con una funda de cartón negro.
Era tarde y al conectar su equipo por última vez se sorprendió al ver un débil resplandor amarillo-verdoso a lo lejos: sobre un banco próximo había un pequeño cartón con una solución de cristales de platino-cianuro de bario, observó que al apagar el tubo se obscurecía y al prenderlo se producía nuevamente, retiró más lejos el cartón y comprobó que la fluorescencia se seguía produciendo, repitió el experimento y sucedió lo mismo, los rayos creaban una radiación muy penetrante, pero invisible. Observó que los rayos atravesaban grandes capas de papel e incluso metales menos densos que el plomo.
En las siete semanas siguientes, estudió con gran rigor las características propiedades de estos nuevos y desconocidos rayos. Pensó en fotografíar este fenómeno y entonces fue cuando hizo un nuevo descubrimiento: las placas fotográficas que tenía en su caja estaban veladas. Intuyó la acción de estos rayos sobre la emulsión fotográfica y se dedicó a comprobarlo. Colocó una caja de madera con unas pesas sobre una placa fotográfica y el resultado fue sorprendente al impresionarse la imagen de las pesas. Hizo varios experimentos con su brújula de bolsillo, el cañón de la escopeta. Para comprobar la distancia y el alcance de los rayos, pasó al cuarto de al lado, cerró la puerta y colocó una placa fotográfica. Obtuvo la imagen de la moldura, el gozne de la puerta e incluso los trazos de la brocha. Cien años despues ninguna de sus investigaciones ha sido considerada como equivocada. El 22 de diciembre, un día memorable, al no poder manejar al mismo tiempo su carrete, la placa fotográfica de cristal y colocar su mano sobre ella, le pide a su esposa que coloque la mano sobre la placa durante quince minutos. Al revelar la placa de cristal apareció la mano de Berta, la primera imagen radiográfica del cuerpo humano. Así nace una de las ramas más poderosas y excitantes de la Medicina: la Radiología.
El descubridor de estos tipos de rayos le colocó el nombre de "X" porque no sabia que eran, ni como eran provocados, y porque esto significa "desconocido", dándole mayor sentido que cualquier otro nombre, por lo que durante muchos años después se decidió que conservara ese nombre.
La noticia del descubrimiento de los rayos "x" se divulgó con increíble rapidez en el mundo. Roentgen fue objeto de múltiples reconocimientos, el emperador Guillermo II de Alemania le concedió la Orden de la Corona, fue honrado con la medalla Rumford de la Real Sociedad de Londres en 1896, con la medalla Barnard de la Universidad de Columbia y con el premio Nobel de Física en 1901.
El descubrimiento de los rayos "X", fue el producto de la investigación, experimentación y no por accidente como algunos autores afirman; W.C. Roentgen, hombre de ciencia, agudo observador, investiga los detalles más nimios, por eso tuvo éxito donde los demás fracasaron. Este genio no quiso patentar su descubrimiento cuando Thomas Alva Edison se lo propuso, manifestando que lo legaba para beneficio de la humanidad.
Definición
Los rayos X son una radiación electromagnética de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos, mientras que los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente. Los rayos X son una radiación ionizante porque al interaccionar con la materia produce la ionización de los átomos de la misma, es decir, origina partículas con carga (iones).
Los rayos X también pueden ser utilizados para explorar la estructura de la materia cristalina mediante experimentos de difracción de rayos X por ser su longitud de onda similar a la distancia entre los átomos de la red cristalina. La difracción de rayos X es una de las herramientas más útiles en el campo de la cristalografía.
Producción de rayos X
Los rayos X son producto de la desaceleración rápida de electrones muy energéticos (del orden 1000eV) al chocar con un blanco metálico. Según la mecánica clásica, una carga acelerada emite radiación electromagnética, de este modo, el choque produce un espectro continuo de rayos X (a partir de cierta longitud de onda mínima). Sin embargo experimentalmente, además de este espectro continuo, se encuentran líneas características para cada material. Estos espectros —continuo y característico— se estudiarán más en detalle a continuación.

La producción de rayos X se da en un tubo de rayos X que puede variar dependiendo de la fuente de electrones y puede ser de dos clases: tubos con filamento o tubos con gas.
El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento caliente de tungsteno y el ánodo es un bloque de cobre en el cual esta inmerso el blanco. El ánodo es refrigerado continuamente mediante la circulación de agua, pues la energía de los electrones al ser golpeados con el blanco, es transformada en energía térmica en un gran porcentaje. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y producto de la colisión los rayos X son generados. Finalmente el tubo de rayos X posee una ventana la cual es transparente a este tipo de radiación elaborada en berilio, aluminio o mica.
La radiación gamma (γ) es un tipo de radiación electromagnética producida generalmente por elementos radioactivos o procesos subatómicos como la aniquilación de un par positrón-electrón. Este tipo de radiación de tal magnitud también es producida en fenómenos astrofísicos de gran violencia.
Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capaz de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células, por lo que son usados para esterilizar equipos médicos y alimentos.
La energía de este tipo de radiación se mide en megaelectronvoltios (MeV). Un Mev corresponde a fotones gamma de longitudes de onda inferiores a 10 - 11 m o frecuencias superiores a 1019 Hz.
Los rayos gamma se producen en la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos. Los rayos gamma se diferencian de los rayos X en su origen, debido a que estos últimos se producen a nivel extranuclear, por fenómenos de frenado electrónico. Generalmente asociada con la energía nuclear y los reactores nucleares, la radiactividad se encuentra en nuestro entorno natural, desde los rayos cósmicos, que nos bombardean desde el sol y las galaxias de fuera de nuestro Sistema Solar, hasta algunos isótopos radiactivos que forman parte de nuestro entorno natural.
En general, los rayos gamma producidos en el espacio no llegan a la superficie de la Tierra, pues son absorbidos en la alta atmósfera. Para observar el universo en estas frecuencias, es necesario utilizar globos de gran altitud u observatorios espaciales. En ambos casos se utiliza el efecto Compton para detectar los rayos gamma. Estos rayos gamma se producen en fenómenos astrofísicos de alta energía como explosiones de supernovas o núcleos de galaxias activas. En astrofísica se denominan GRB (Gamma Ray Bursts) a fuentes de rayos gamma que duran unos segundos o unas pocas horas siendo sucedidos por un brillo decreciente de la fuente en rayos X durante algunos días. Ocurren en posiciones aleatorias del cielo y su origen permanece todavía bajo discusión científica. En todo caso parecen constituir los fenómenos más energéticos del Universo.
La excepción son los rayos gamma de energía por encima de unos miles de MeV (o sea, gigaelectronvoltios o GeV), que, al incidir en la atmósfera, producen miles de partículas (cascada atmosférica extensa) que, como viajan a velocidades más elevadas que la luz en el aire, generan radiación de Cherenkov. Esta radiación es detectada en la superficie de la Tierra mediante un tipo de telescopio llamado telescopio Cherenkov.

Introducción a los Líquidos Penetrantes
Discontinuidades que detecta, defectos superficiales como: poros, grietas, rechupes, traslapes, costuras, laminaciones, etc.
Materiales: Sólidos metálicos y no metálicos
VENTAJAS
o Muy económico
o Inspección a simple vista
o No se destruye la pieza
o Se obtiene resultados inmediatos.
DESVENTAJAS
o Solo detecta fallas superficiales
o Difícil establecimiento de patrones
o La superficie a inspeccionar debe estar limpia y sin recubrimientos
o No se puede inspeccionar materiales demasiado porosos
PRINCIPIOS FÍSICOS
o Capilaridad: Es la acción que origina que un liquido ascienda o descienda a través de los llamados tubos capilares.
o Cohesión: Es la fuerza que mantiene a las moléculas de un cuerpo a distancias cercanas unas de las otras.
o Adherencia: Es la fuerza de atracción entre moléculas de sustancias diferentes.
o Viscosidad: Es la resistencia al deslizamiento de una capa de un fluido sobre otra capa.
o Tensión superficial: Es la fuerza no compensada que ejerce la superficie del liquido debido a la tensión no compensada de las moléculas subsuperficiales sobre la membrana superior.
Características de los líquidos penetrantes
El liquido penetrante tiene la propiedad de penetrar en cualquier abertura u orificio en la superficie del material. El penetrante ideal debe reunir lo siguiente:
• Habilidad para penetrar orificios y aberturas muy pequeñas y estrechas.
• Habilidad de permanecer en aberturas amplias.
• Habilidad de mantener color o la fluorescencia.
• Habilidad de extenderse en capas muy finas.
• Resistencia a la evaporación.
• De fácil remoción de la superficie.
• De difícil eliminación una vez dentro de la discontinuidad.
• De fácil absorción de la discontinuidad.
• Atoxico.
• Inoloro.
• No corrosivo.
• Antiinflamable.
• Estable bajo condiciones de almacenamiento.
• Costo razonable.
Propiedad física Penetrante Revelador
Capilaridad Alta Baja
Tensión superficial Baja Alta
Adherencia Baja Alta
Cohesión Baja Alta
Viscosidad Baja Alta
Partículas Pequeñas Grandes
• Tensión superficial: Es una de las propiedades mas importantes. Se requiere una tensión superficial baja para obtener buenas propiedades de penetración y mojado

• Poder humectante: El penetrador debe ser capaz de mojar completamente la superficie del material y es una de las propiedades mas importantes. Esto se refiere al ángulo de contacto del líquido con la superficie, el cual debe ser lo mas bajo posible.
• Viscosidad: Esta propiedad no produce efecto alguno en la habilidad del liquido para penetrar, aunque afecta la velocidad de penetración. Los penetrantes de alta viscosidad penetran lentamente, en tanto que los de baja viscosidades escurren muy rápido y tiene la tendencia a no ser retenidos en los defectos de poca profundidad; por lo tanto se recomienda una viscosidad media.
• Volatilidad: Los líquidos penetrantes no deben ser volátiles. Si existe una evaporación excesiva se los productos del penetrante, se verá afectada la sensibilidad de todo el proceso, debido tanto al desequilibrio de la formula, como a la perdida del poder humectante.
• Gravedad especifica o densidad relativa: No juega un papel directo sobre el comportamiento de un penetrante dado; sin embargo, con densidades bajas se facilita el transporte de materiales extraños que tenderán a sedimentar en el fondo cuando se usan tanques abiertos. La mayoría de los líquidos penetrantes tienen densidades relativas que varían entre 0.86 y 1.06 a 16°C, por lo general la densidad es menor a 1.
• Punto de inflamación: Como medida de seguridad practica los líquidos penetrantes deberán poseer un punto de inflamación elevado con el fin de reducir los peligros de incendio. Generalmente el punto de inflamación es mayor de 95 °C y en recipientes abiertos no debe ser menor de 65 °C.
• Inactividad química: Los productos usados en la formulación de los líquidos penetrantes deben se inertes y no corrosivos con respecto a los materiales a ser ensayados y a los recipientes que los contienen.
• Capacidad de disolución: El penetrante debe tener una elevada capacidad para contener grandes concentraciones de pigmentos coloreados o fluorescentes usados y mantenerlos en solución.
Método de aplicación de los líquidos penetrantes en Pruebas No Destructivas
Se aplica el liquido penetrante a la superficie de la pieza a ser examinada, permitiendo que penetre en las aberturas del material, después de lo cual el exceso del liquido es removido. Se aplica entonces el revelador, el cual es humedecido o afectado por el penetrante atrapado en las discontinuidades de esta manera se incrementa la evidencia de las discontinuidades, tal que puedan ser vistas ya sea directamente o por medio de una lámpara o luz negra.
Tipo I = Penetrante fluorescente
Tipo II = Tintas permanentes o visibles
Proceso A = Penetrante lavable en agua
Proceso B = Penetrante postemulsificado
Proceso C = Penetrante removido con solvente
Revelador seco: Grano fino se aplica por espolvoreado, rociado o sumergido.
Revelador no acuoso: Es una suspensión absorbente, aplicado por rocío
Revelador húmedo: Es una suspensión absorbente de polvo en agua, se aplica por inmersión.
Portátil ( atomizador )
Estacionario ( inmersión )
Simple vista Spoteheck (portátil)
Luz negra Syglo (estacionario)

Jesus Garcia Flores dijo...

Rayos X
La denominación rayos X designa a una radiación electromagnética, invisible, capaz de atravesar cuerpos opacos y de impresionar las películas fotográficas. La longitud de onda está entre 10 a 0,1 nanómetros, correspondiendo a frecuencias en el rango de 30 a 3.000 PHz (de 50 a 5.000 veces la frecuencia de la luz visible).
Descubrimiento
El 8 de noviembre de 1895, el físico Wilhelm Conrad Röntgen, realiza experimentos con los tubos de Hittorff-Crookes (o simplemente tubo de Crookes) y la bobina de Ruhmkorff, analizaba los rayos catódicos, para evitar la fluorescencia violeta, que producían los rayos catódicos en las paredes de un vidrio del tubo, crea un ambiente de oscuridad, cubre el tubo con una funda de cartón negro.
Era tarde y al conectar su equipo por última vez se sorprendió al ver un débil resplandor amarillo-verdoso a lo lejos: sobre un banco próximo había un pequeño cartón con una solución de cristales de platino-cianuro de bario, observó que al apagar el tubo se obscurecía y al prenderlo se producía nuevamente, retiró más lejos el cartón y comprobó que la fluorescencia se seguía produciendo, repitió el experimento y sucedió lo mismo, los rayos creaban una radiación muy penetrante, pero invisible. Observó que los rayos atravesaban grandes capas de papel e incluso metales menos densos que el plomo.
En las siete semanas siguientes, estudió con gran rigor las características propiedades de estos nuevos y desconocidos rayos. Pensó en fotografíar este fenómeno y entonces fue cuando hizo un nuevo descubrimiento: las placas fotográficas que tenía en su caja estaban veladas. Intuyó la acción de estos rayos sobre la emulsión fotográfica y se dedicó a comprobarlo. Colocó una caja de madera con unas pesas sobre una placa fotográfica y el resultado fue sorprendente al impresionarse la imagen de las pesas. Hizo varios experimentos con su brújula de bolsillo, el cañón de la escopeta. Para comprobar la distancia y el alcance de los rayos, pasó al cuarto de al lado, cerró la puerta y colocó una placa fotográfica. Obtuvo la imagen de la moldura, el gozne de la puerta e incluso los trazos de la brocha. Cien años despues ninguna de sus investigaciones ha sido considerada como equivocada. El 22 de diciembre, un día memorable, al no poder manejar al mismo tiempo su carrete, la placa fotográfica de cristal y colocar su mano sobre ella, le pide a su esposa que coloque la mano sobre la placa durante quince minutos. Al revelar la placa de cristal apareció la mano de Berta, la primera imagen radiográfica del cuerpo humano. Así nace una de las ramas más poderosas y excitantes de la Medicina: la Radiología.
El descubridor de estos tipos de rayos le colocó el nombre de "X" porque no sabia que eran, ni como eran provocados, y porque esto significa "desconocido", dándole mayor sentido que cualquier otro nombre, por lo que durante muchos años después se decidió que conservara ese nombre.
La noticia del descubrimiento de los rayos "x" se divulgó con increíble rapidez en el mundo. Roentgen fue objeto de múltiples reconocimientos, el emperador Guillermo II de Alemania le concedió la Orden de la Corona, fue honrado con la medalla Rumford de la Real Sociedad de Londres en 1896, con la medalla Barnard de la Universidad de Columbia y con el premio Nobel de Física en 1901.
El descubrimiento de los rayos "X", fue el producto de la investigación, experimentación y no por accidente como algunos autores afirman; W.C. Roentgen, hombre de ciencia, agudo observador, investiga los detalles más nimios, por eso tuvo éxito donde los demás fracasaron. Este genio no quiso patentar su descubrimiento cuando Thomas Alva Edison se lo propuso, manifestando que lo legaba para beneficio de la humanidad.
Definición
Los rayos X son una radiación electromagnética de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos, mientras que los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente. Los rayos X son una radiación ionizante porque al interaccionar con la materia produce la ionización de los átomos de la misma, es decir, origina partículas con carga (iones).
Los rayos X también pueden ser utilizados para explorar la estructura de la materia cristalina mediante experimentos de difracción de rayos X por ser su longitud de onda similar a la distancia entre los átomos de la red cristalina. La difracción de rayos X es una de las herramientas más útiles en el campo de la cristalografía.
Producción de rayos X
Los rayos X son producto de la desaceleración rápida de electrones muy energéticos (del orden 1000eV) al chocar con un blanco metálico. Según la mecánica clásica, una carga acelerada emite radiación electromagnética, de este modo, el choque produce un espectro continuo de rayos X (a partir de cierta longitud de onda mínima). Sin embargo experimentalmente, además de este espectro continuo, se encuentran líneas características para cada material. Estos espectros —continuo y característico— se estudiarán más en detalle a continuación.

La producción de rayos X se da en un tubo de rayos X que puede variar dependiendo de la fuente de electrones y puede ser de dos clases: tubos con filamento o tubos con gas.
El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento caliente de tungsteno y el ánodo es un bloque de cobre en el cual esta inmerso el blanco. El ánodo es refrigerado continuamente mediante la circulación de agua, pues la energía de los electrones al ser golpeados con el blanco, es transformada en energía térmica en un gran porcentaje. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y producto de la colisión los rayos X son generados. Finalmente el tubo de rayos X posee una ventana la cual es transparente a este tipo de radiación elaborada en berilio, aluminio o mica.
La radiación gamma (γ) es un tipo de radiación electromagnética producida generalmente por elementos radioactivos o procesos subatómicos como la aniquilación de un par positrón-electrón. Este tipo de radiación de tal magnitud también es producida en fenómenos astrofísicos de gran violencia.
Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capaz de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células, por lo que son usados para esterilizar equipos médicos y alimentos.
La energía de este tipo de radiación se mide en megaelectronvoltios (MeV). Un Mev corresponde a fotones gamma de longitudes de onda inferiores a 10 - 11 m o frecuencias superiores a 1019 Hz.
Los rayos gamma se producen en la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos. Los rayos gamma se diferencian de los rayos X en su origen, debido a que estos últimos se producen a nivel extranuclear, por fenómenos de frenado electrónico. Generalmente asociada con la energía nuclear y los reactores nucleares, la radiactividad se encuentra en nuestro entorno natural, desde los rayos cósmicos, que nos bombardean desde el sol y las galaxias de fuera de nuestro Sistema Solar, hasta algunos isótopos radiactivos que forman parte de nuestro entorno natural.
En general, los rayos gamma producidos en el espacio no llegan a la superficie de la Tierra, pues son absorbidos en la alta atmósfera. Para observar el universo en estas frecuencias, es necesario utilizar globos de gran altitud u observatorios espaciales. En ambos casos se utiliza el efecto Compton para detectar los rayos gamma. Estos rayos gamma se producen en fenómenos astrofísicos de alta energía como explosiones de supernovas o núcleos de galaxias activas. En astrofísica se denominan GRB (Gamma Ray Bursts) a fuentes de rayos gamma que duran unos segundos o unas pocas horas siendo sucedidos por un brillo decreciente de la fuente en rayos X durante algunos días. Ocurren en posiciones aleatorias del cielo y su origen permanece todavía bajo discusión científica. En todo caso parecen constituir los fenómenos más energéticos del Universo.
La excepción son los rayos gamma de energía por encima de unos miles de MeV (o sea, gigaelectronvoltios o GeV), que, al incidir en la atmósfera, producen miles de partículas (cascada atmosférica extensa) que, como viajan a velocidades más elevadas que la luz en el aire, generan radiación de Cherenkov. Esta radiación es detectada en la superficie de la Tierra mediante un tipo de telescopio llamado telescopio Cherenkov.

Introducción a los Líquidos Penetrantes
Discontinuidades que detecta, defectos superficiales como: poros, grietas, rechupes, traslapes, costuras, laminaciones, etc.
Materiales: Sólidos metálicos y no metálicos
VENTAJAS
o Muy económico
o Inspección a simple vista
o No se destruye la pieza
o Se obtiene resultados inmediatos.
DESVENTAJAS
o Solo detecta fallas superficiales
o Difícil establecimiento de patrones
o La superficie a inspeccionar debe estar limpia y sin recubrimientos
o No se puede inspeccionar materiales demasiado porosos
PRINCIPIOS FÍSICOS
o Capilaridad: Es la acción que origina que un liquido ascienda o descienda a través de los llamados tubos capilares.
o Cohesión: Es la fuerza que mantiene a las moléculas de un cuerpo a distancias cercanas unas de las otras.
o Adherencia: Es la fuerza de atracción entre moléculas de sustancias diferentes.
o Viscosidad: Es la resistencia al deslizamiento de una capa de un fluido sobre otra capa.
o Tensión superficial: Es la fuerza no compensada que ejerce la superficie del liquido debido a la tensión no compensada de las moléculas subsuperficiales sobre la membrana superior.
Características de los líquidos penetrantes
El liquido penetrante tiene la propiedad de penetrar en cualquier abertura u orificio en la superficie del material. El penetrante ideal debe reunir lo siguiente:
• Habilidad para penetrar orificios y aberturas muy pequeñas y estrechas.
• Habilidad de permanecer en aberturas amplias.
• Habilidad de mantener color o la fluorescencia.
• Habilidad de extenderse en capas muy finas.
• Resistencia a la evaporación.
• De fácil remoción de la superficie.
• De difícil eliminación una vez dentro de la discontinuidad.
• De fácil absorción de la discontinuidad.
• Atoxico.
• Inoloro.
• No corrosivo.
• Antiinflamable.
• Estable bajo condiciones de almacenamiento.
• Costo razonable.
Propiedad física Penetrante Revelador
Capilaridad Alta Baja
Tensión superficial Baja Alta
Adherencia Baja Alta
Cohesión Baja Alta
Viscosidad Baja Alta
Partículas Pequeñas Grandes
• Tensión superficial: Es una de las propiedades mas importantes. Se requiere una tensión superficial baja para obtener buenas propiedades de penetración y mojado

• Poder humectante: El penetrador debe ser capaz de mojar completamente la superficie del material y es una de las propiedades mas importantes. Esto se refiere al ángulo de contacto del líquido con la superficie, el cual debe ser lo mas bajo posible.
• Viscosidad: Esta propiedad no produce efecto alguno en la habilidad del liquido para penetrar, aunque afecta la velocidad de penetración. Los penetrantes de alta viscosidad penetran lentamente, en tanto que los de baja viscosidades escurren muy rápido y tiene la tendencia a no ser retenidos en los defectos de poca profundidad; por lo tanto se recomienda una viscosidad media.
• Volatilidad: Los líquidos penetrantes no deben ser volátiles. Si existe una evaporación excesiva se los productos del penetrante, se verá afectada la sensibilidad de todo el proceso, debido tanto al desequilibrio de la formula, como a la perdida del poder humectante.
• Gravedad especifica o densidad relativa: No juega un papel directo sobre el comportamiento de un penetrante dado; sin embargo, con densidades bajas se facilita el transporte de materiales extraños que tenderán a sedimentar en el fondo cuando se usan tanques abiertos. La mayoría de los líquidos penetrantes tienen densidades relativas que varían entre 0.86 y 1.06 a 16°C, por lo general la densidad es menor a 1.
• Punto de inflamación: Como medida de seguridad practica los líquidos penetrantes deberán poseer un punto de inflamación elevado con el fin de reducir los peligros de incendio. Generalmente el punto de inflamación es mayor de 95 °C y en recipientes abiertos no debe ser menor de 65 °C.
• Inactividad química: Los productos usados en la formulación de los líquidos penetrantes deben se inertes y no corrosivos con respecto a los materiales a ser ensayados y a los recipientes que los contienen.
• Capacidad de disolución: El penetrante debe tener una elevada capacidad para contener grandes concentraciones de pigmentos coloreados o fluorescentes usados y mantenerlos en solución.
Método de aplicación de los líquidos penetrantes en Pruebas No Destructivas
Se aplica el liquido penetrante a la superficie de la pieza a ser examinada, permitiendo que penetre en las aberturas del material, después de lo cual el exceso del liquido es removido. Se aplica entonces el revelador, el cual es humedecido o afectado por el penetrante atrapado en las discontinuidades de esta manera se incrementa la evidencia de las discontinuidades, tal que puedan ser vistas ya sea directamente o por medio de una lámpara o luz negra.
Tipo I = Penetrante fluorescente
Tipo II = Tintas permanentes o visibles
Proceso A = Penetrante lavable en agua
Proceso B = Penetrante postemulsificado
Proceso C = Penetrante removido con solvente
Revelador seco: Grano fino se aplica por espolvoreado, rociado o sumergido.
Revelador no acuoso: Es una suspensión absorbente, aplicado por rocío
Revelador húmedo: Es una suspensión absorbente de polvo en agua, se aplica por inmersión.
Portátil ( atomizador )
Estacionario ( inmersión )
Simple vista Spoteheck (portátil)
Luz negra Syglo (estacionario)

Jesus Garcia Flores dijo...

Ensayo de la chispa en diferentes materiales

Catedrático: Renan Ávila Morales
Alumno: Jesus garcia flores Registro: 080-11989-00223
Seccion: A



Introducción
En el presente informe se le presenta una practica con diferentes metales la practica consiste en la investigación de los materiales que presentan una chispa al ser expuesta a un esmeril.


Objetivos.
• Conocimiento de diferentes materiales
• Identificación de materiales que pueden llegar a producir una chispa
• Conocer el uso de herramientas del laboratorio


Herramientas y materiales usadas en la práctica de laboratorio
• Gafas
• Gabacha
• Pinzas para sostener los materiales
• Esmeril
• Agua
• Aluminio
• Lamina de zinc
• Hierro fundido
• Camara fotográfica


Definición de la chispa
La chispa es producida al momento de que dos materiales chocan al ser frotados con fuerza una superficie con la otra
Cuando el choque de estos materiales es producido se deriva una serie de chispas que a su vez desatan una serie de colores entre los colores tenemos rojo, color naranja, amarillos en la forma en que salen las chispas pueden ser
Muchos ramos pequeños Flujo de líneas amarilla, aclarando en el centro, formando espinas en los extremos Pocos estallidos finos de Carbono seguidos por club liso luminoso Un flujo delgado y lineal, el cuadro de la chispa vivo, líneas discontinuas en las cabezas Haz corto Templado: con pocos Endurecido: con muchos ramos luminosos El flujo de líneas continuas, alguno los estallidos de carbono, línea coloreada de naranja En la cabeza El flujo de líneas rojo oscuro con brillo en la punta de la lanza, pocas espinas Líneas del flujo rojas, punteadas oscuras con brillos en las cabezas de la línea Haz corto con espina como los estallidos de carbono Flujo continuo, línea sin los estallidos de carbono
aquí presento algunas de las chispas:

A continuación se presentan las chispas del ensayo

Esta chispa es producida por la lamina de zinc:


Esta es producida por un pedaso de hierro:

RENAN AVILA dijo...

El informe del montaje de la probeta tiene que ir completo con secuencia de la hoja de informe , su nota 12/20.- rayos x, líquidos penetrantes 8/10, propiedades y sus materiales 0/10, ensayo de la chispa tiene que ser completo, su nota 14/20.

RENAN AVILA dijo...

No hizo el trabajo del diagrama hierro carbono por lo tanto tiene en este trabajo 0/10.-Trate de trabajar en las tareas que se asignan.